Hand Tracking and Affine Shape-Appearance Handshape Sub-units in Continuous Sign Language Recognition
نویسندگان
چکیده
We propose and investigate a framework that utilizes novel aspects concerning probabilistic and morphological visual processing for the segmentation, tracking and handshape modeling of the hands, which is used as front-end for sign language video analysis. Our ultimate goal is to explore the automatic Handshape Sub-Unit (HSU) construction and moreover the exploitation of the overall system in automatic sign language recognition (ASLR). We employ probabilistic skin color detection followed by the proposed morphological algorithms and related shape filtering for fast and reliable segmentation of hands and head. This is then fed to our hand tracking system which emphasizes robust handling of occlusions based on forward-backward prediction and incorporation of probabilistic constraints. The tracking is exploited by an Affine-invariant Modeling of hand Shape-Appearance images, offering a compact and descriptive representation of the hand configurations. We further propose that the handshape features extracted via the fitting of this model are utilized to construct in an unsupervised way basic HSUs. We first provide intuitive results on the HSU to sign mapping and further quantitatively evaluate the integrated system and the constructed HSUs on ASLR experiments at the sub-unit and sign level. These are conducted on continuous SL data from the BU400 corpus and investigate the effect of the involved parameters. The experiments indicate the effectiveness of the overall approach and especially for the modeling of handshapes when incorporated in the HSU-based framework showing promising results.
منابع مشابه
Dynamic Affine-Invariant Shape-Appearance Handshape Features and Classification in Sign Language Videos
We propose the novel approach of dynamic affine-invariant shape-appearance model (Aff-SAM) and employ it for handshape classification and sign recognition in sign language (SL) videos. AffSAM offers a compact and descriptive representation of hand configurations as well as regularized model-fitting, assisting hand tracking and extracting handshape features. We construct SA images representing t...
متن کاملAdvances in Dynamic-Static Integration of Movement and Handshape Cues for Sign Language Recognition
We explore the integration of movement-position (MP) and handshape (HS) cues for sign language recognition. The proposed method combines the data-driven subunit (SU) modeling exploiting the dynamicstatic notion for MP and the affine shape-appearance SUs for HS configurations. These aspects lead to the new dynamic-static integration of manual cues. This data-driven scheme takes advantage of the ...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملAppearance-Based Features for Automatic Continuous Sign Language Recognition
This diploma thesis investigates appearance-based features for the person-independent vision-based recognition of continuous sign language. A large variety of methods which have been successfully used for automatic speech recognition is applied to this task. Appearance-based approaches do not rely on a segmentation of the images or on predefined models of the image content and use the image its...
متن کاملSign Language Recognition Using Sub-units
This paper discusses sign language recognition using linguistic sub-units. It presents three types of sub-units for consideration; those learnt from appearance data as well as those inferred from both 2D or 3D tracking data. These sub-units are then combined using a sign level classifier; here, two options are presented. The first uses Markov Models to encode the temporal changes between sub-un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010